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discrete method: using water solubility as an example

Abstract

Hsin Liu a,c, Cheng-Wei Lee a, Bo-Han Su b, and Yufeng J. Tseng b,c,d,e

Over the past few years, the effectiveness of neural network methods has been approved in several 

fields, including image recognition, natural language processing, and chemical properties predicting. 

While the neural network provides higher accuracy, its lack of explainability tends to limit the use for 

chemists. Water solubility is one of the endpoints that neural network methods can achieve higher 

accuracy than other machine learning methods. However, the predicted property cannot be further 

modified without explainability. In this study, we adopt explainable discrete element approach to 

construct the graph convolution neural network (GCN). To train the model, we use Delaney’s dataset, 

the benchmark of the water solubility. Then we compare the output of the model with the existing 

knowledge about water solubility to explore the versatility of the explainable GCN model. In 

conclusion, the above model provides the same prediction as indicated by existing knowledge about 

how the functional groups affect water solubility. With the explainability of neural network models 

established, it is expected to apply the same method to other endpoints prediction about how the 

functional groups affect the results.

Introduction
Neural networks are widely used in various fields because they can automatically extract features 

from complex inputs and efficient in training. It is now also used in the chemical field, but the need of 

explainability particularly required in this field has not been met. Some differential-based methods 

have been explored, but their shortcomings are obvious when the input data is discrete. So we 

introduce an explanatory method based on Graph convolution neural network (GCN) in this study.

Conclusion
Numeric value-based dataset also can be used to train the GCN explainable neural network. 

Regarding water solubility, our explainable model proposed the same substructure as indicated by 

literature review. 

Auto feature extraction works well in GCN neural network training. No features converted from 

human knowledge were adopted in this study. 

This model can help researchers discover the problematic substructure for other endpoints 

numeric value-based dataset.
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Results

The model perform by testing dataset indicated by PCC with Delaney small dataset is above 0.95 and 

with larger Chemidplus dataset the performance by PCC is 0.89. 

We selected the Chemidplus dataset to train the model because of its large size. The result is as the 

following, the values shown here are only those above average.
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Graph Convolutional Neural Network (GCN)1 is used in this study as the prediction method. The 
molecular structure is transformed into a graph structure as model input, and each atom is encoded 
as 77 features.
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ChemIDPlus database was built from more than 100 data sources and mainly matched to the 
compounds cited in National Library of Medicine (NLM). Our study retrieved and cleaned the 
data from the above database, which included 1967 compounds.

Delaney small dataset (Delaney et al.1) is the most commonly used water-soluble data 
containing 1128 records with the aqueous solubility values as log mol/L at 25 °C. This dataset is 
widely used in several related works about solubility model construction.

The model structure 2 1 1 5

Discrete Explainable Method is based on GCN. The features of GCN node encode with atom features 

are binary. For each feature, 1 represents this feature and 0 represents no feature. The GCN model 

can be denoted as a function        , and the original input can be denoted as       , so the output of the 

model can be denoted as                 . The self replacement only replaces the self node         to an empty 

node denoted as            (Fig 1), the neighbor replacement replaces not only the self node      but also 

all the nodes connected to the node denoted as                         (Fig 2), and the pair neighbor replacement 

replaces the 2 nodes    and    with all the neighbors connected by one edge denoted as              (Fig 3). 

We define the node impact score in each replacement as                                                         . Because 

the                               should be distributed to each connected node, so we define the impact score of 

node     for this case as                                                               where     is the nodes connected to     . The 

three factors produced by above methods will correspond to three coefficients, thus the final impact 

score of node     is:i
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Explainable result


